1/2(3x^2)=96

Simple and best practice solution for 1/2(3x^2)=96 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2(3x^2)=96 equation:



1/2(3x^2)=96
We move all terms to the left:
1/2(3x^2)-(96)=0
Domain of the equation: 23x^2!=0
x^2!=0/23
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-96*23x^2+1=0
Wy multiply elements
-2208x^2+1=0
a = -2208; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2208)·1
Δ = 8832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8832}=\sqrt{64*138}=\sqrt{64}*\sqrt{138}=8\sqrt{138}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{138}}{2*-2208}=\frac{0-8\sqrt{138}}{-4416} =-\frac{8\sqrt{138}}{-4416} =-\frac{\sqrt{138}}{-552} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{138}}{2*-2208}=\frac{0+8\sqrt{138}}{-4416} =\frac{8\sqrt{138}}{-4416} =\frac{\sqrt{138}}{-552} $

See similar equations:

| 8m-2-3m=-7 | | −5x=25 | | 0.14+0.08(y+8000)=2180 | | 5x-3x=3x+15 | | 0.3=0.27/x | | 30-7+(12+15/3)=x | | 2x+2=3-10x | | 5t=2/3(9t-15) | | 32-(-3)=x | | 59=−13−9m | | (x-x/2+x/6-x/24=120 | | 2(x+8)^2=200 | | 15x−5=4x−16x= | | 7b-(35-2b)=-98 | | 3-4x=2x-25 | | K/3+k/6=7/2,k | | (15x-2)°+(7x+4)°=90 | | 25^(2x+1)=125 | | 4k−18=2k | | Y=-x2+120x | | x+4x-9+4x-9=18 | | -7=+7+b | | (2/5)y=-30 | | 1/8(4t-4)=1/16(t+4) | | 10q-5-3q=30 | | x-12+3x=3-2(x+18 | | 5(2y-1)=65 | | 4n/3=32 | | 1/2(7t-6)=1/4(t+6) | | (2/5)x+3=2 | | 3=3e–(-9) | | 6.8=7.4-0.3x |

Equations solver categories